Effects of surface geometry and non-newtonian viscosity on the flow field in arterial stenoses

نویسندگان

  • W. W. Jeong
  • K. Rhee
چکیده

Hemodynamics including flow pattern, shear stress, and blood viscosity characteristics has been believed to affect the development and progression of arterial stenosis, but previous studies lack of realistic physiological considerations such as irregular surface geometry, non-Newtonian viscosity characteristics and flow pulsatility. The effects of surface irregularities and non-Newtonian viscosity on flow fields were explored in this study using the arterial stenosis models with 48% arterial occlusions under physiological flow condition. Computational flow dynamics based on the finite volume method was employed for Newtonian and non-Newtonian fluid. The wall shear stresses (WSS) in the irregular surface model were higher compared to those in the smooth surface models. Also, non-Newtonian viscosity characteristics increase the peak WSS significantly. The dimensionless pressure drop and the time averaged WSS in pulsatile flow were higher than those in steady flow. But pulsatility effects on pressure and WSS were less significant compared to non-Newtonian viscosity effects. Therefore, irregular surface geometry and non-Newtonian viscosity characteristics should be considered in predicting pressure drop and WSS in stenotic arteries.

منابع مشابه

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

3.D Analysis of Blood Flow in Consecutive Stenoses of Coronary Artery

Blood flow in the coronary artery with consecutive stenoses has been modeled numerically in the present study and its applications to blood diseases have been inspected. Considering the importance of the artery stenosis, the distributions of the wall shear stress (WSS) in the consecutive stenoses of the artery have been numerically and theoretically investigated in this paper. Angiography resul...

متن کامل

Analysis of Transient Rivlin-Ericksen Fluid and Irreversibility of Exothermic Reactive Hydromagnetic Variable Viscosity

This study analyzes the unsteady Rivlin-Ericksen fluid and irreversibility of exponentially temperature dependent variable viscosity of hydromagnetic two-step exothermic chemical reactive flow along the channel axis with walls convective cooling. The non-Newtonian Hele-Shaw flow of Rivlin-Erickson fluid is driven by bimolecular chemical kinetic and unvarying pressure gradient. The reactive flui...

متن کامل

Study of Fluid Flow and Heat Transfer of AL2O3-Water as a Non-Newtonian Nanofluid through Lid-Driven Enclosure

Flow field and heat transfer of a nanofluid, whose non-Newtonian behavior has been demonstrated in the laboratory, in a square enclosure have been numerically modeled and investigated. To estimate the viscosity of nanofluid, experimental data of Hong and Kim, 2012 have been used, and a new model has been proposed. Finally, the obtained results have been compared to those of Newtonian behavior. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009